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Abstract—Face recognition has become one of the important 

biometrics in many applications. However, there is a 

problem of collecting more than one image per person in the 

training data set, the so-called “one sample per person 

problem”. Hence in this paper, we develop a face 

recognition system with a string grammar nearest neighbor 

(sgNN) to cope with the problem. We implement our system 

in three data sets, i.e., ORL, MIT-CBCL, and Georgia Tech 

databases. The recognition rates of the test data set from 

three databases are 88.25%, 87.50%, and 70.71%, 

respectively.  

 

Index Terms—face recognition, one sample per person, 

 

 

I. INTRODUCTION 

Face recognition is one of the important biometric 

techniques that are used in many applications including 

law enforcement, surveillance, security, etc. It can be 

done even though the subjects are not cooperated, e.g., 

identify a person from a surveillance camera. In the case 

of uncooperative subjects, many challenging problem 

occurs such as a variation of light, pose, face expression, 

and so on. However, there have been many research 

groups working in the face recognition area with some of 

these challenging problems [1]-[12]. Although the 

recognition results could reach 95%, those algorithms 

needed more than one image per person in the training 

process. It has been shown in [13] that the accuracy 

dropped with the decreasing of number of samples per 

person in the training process. Also, since some real 

world applications, it is not easy to collect more than one 

image per person. This “one sample per person problem” 

[13] is another challenging problem in face recognition 

that recently has become an interest of many research 

groups [14]-[25]. The accuracies from these research 

works were not quite high (around 70% to 86%). 

However, there were some other works on “one sample 

per person problem” that yielded high correct 

classification [13], [26]-[29]. Those works usually had 

some pre-processing, e.g., crop image according to eye 

coordinate or background removal.  

In this paper, we develop a face recognition system 

with “one sample per person problem” using string 
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grammar nearest neighbor without cropping image or 

background removal. 

This paper is organized as follows. The next section 

describes the proposed system in details. The 

experimental results are illustrated in Section III. The 

conclusions are drawn in Section IV. 

II. SYSTEM DESCRIPTION 

The face recognition system is shown in Fig. 1. We 

need to preprocess a face image so that we can generate a 

string for each image because the String Grammar 

Nearest Neighbor (sgNN) [30], [31] is a syntactic relative 

of the Nearest Neighbor method. To make the recognition 

simple, we resize each image to 200200. Since the face 

images are in color, in the pre-process step, we firstly 

convert them into gray-scale images using luminance (Y) 

component [32]. Then we compute the average (Ave_f) of 

all the images in the training data set. Please be noted that 

there is only one image per person in the training data set. 

Then we compute the difference between each image 

(Ori_fi) (the original image of the i
th

 person) and the 

average, i.e.,  

_ _ _
i i

Dif f Ori f Ave f           (1) 

 

Figure 1.  Face recognition system 

Fig. 2 shows an example of the original image, an 

average of the training data set from ORL database [33] 

and its difference with respect to the average. 

 
(a)                              (b)                                 (c) 

Figure 2.  An example of (a) original image, (b) average image, and (c) 

the difference between (a) and (b) 

To reduce the effect of the variation of illumination, 

we apply the self quotient normalization [34]. Firstly, the 
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original image is blurred by convolving with the 200200 

Gaussian kernel with 1. This blurred image of i
th

 

person is called Blur_fi. Then, the difference of the i
th

 

person is divided pixel-wise by the blurred image of the 

same person. The final image of the i
th

 person is called 

Fi_fi. Fig. 3 shows an example of this process.  

 
Dif_fi                           Blur_fi                                    Fi_fi 

Figure 3.  An example of self quotient normalization process 

Now, we are ready to create a string for each image by 

first dividing Fi_fi into nonoverlapped subimages, each 

has a size of 55. Hence, we have 1600 subimages. Then 

for each subimage, we implement the Histogram of 

Gradients (HoG) method [35]-[37] with 8 bins as shown 

in Fig. 4. The orientation in each bin is shown Table I. 

The orientation of each pixel (x,y) in the r
th

 subimage is 

computed by 

  1 _ ( , 1) _ ( , 1)
, 360 tan

_ ( 1, ) _ ( 1, )

ir ir

r

ir ir

Fi f x y Fi f x y
x y

Fi f x y Fi f x y
 

   
   

   

  (2) 

 

Figure 4.  Eight bins in HoG 

TABLE I.  BIN ORIENTATION 

Bin No. Orientation 

1 0<=r(x,y) <45 

2 45<=r(x,y)<90 

3 90<=r(x,y)<135 

4 135<=r(x,y)<180 

5 180<=r(x,y)<225 

6 225<=r(x,y)<270 

7 270<=r(x,y)<315 

8 315<=r(x,y)<360 

 

Then the bin with the maximum frequency will be a 

representative of that subimage. For simplicity, we 

represent each bin number by a character in the string 

representing the image, e.g., the bin number 5 has the 

maximum frequency of the 15
th

 subimage, the character 

of this subimage is also 5. This process is repeated for all 

subimages. Then the string of the image is achieved. Fig. 

5 shows the process of computing a string. 

In the recognition process, we implement the string 

grammar nearest neighbor (sgNN) [30], [31] which is a 

counterpart of the nearest neighbor [38]. Identifying a 

string of image i (sti) to the closest string of image j (stj) 

is as following 

sti is j
th

 person if     
1

, min ,
i j i k

k TN
d st st d st st

 
       (3) 

where TN is the number of persons in the training data set. 

The distance between string i and string k, d(sti, stk), is 

Levenshtein distance [30]. 

 

Figure 5.  String created process 

III. EXPERIMENTAL RESULTS 

We implement the system on three standard data sets, 

i.e., ORL or AT&T database [10], [33], MIT-CBCL 

database [39] (Credit is hereby given to the 

Massachusetts Institute of Technology and to the Center 

for Biological and Computational Learning for providing 

the database of facial images), and Georgia Tech face 

database [40]. In the ORL database, there are 40 persons 

with 10 different images (variation of facial expression, 

poses, illumination, rotation and scale) per person in the 

data set. There are 10 individual and each has 200 images 

with different rotations and illuminations in the MIT-

CBCL database. In the Georgia Tech face data set, there 

are 50 persons with 15 face images per person. These 

images are varied in size, facial expression, illumination, 

and rotation. We utilize the same setting for each data set, 

i.e., we manually select one frontal face position of each 

subject from a separate database to be our training data 

set. Hence in each training data set, there is only one 

image for each subject. Fig. 6 shows the train images of 

ORL, MIT-CBCL, and Georgia Tech data sets. The 

recognition rate of ORL database is 88.25%, while that of 

the MIT-CBCL database is 87.50%, and that of the 

Georgia Tech data base is 70.71%. An example of a 

successful recognition from the ORL data base is shown 

in Fig. 7. The recognition rates from all 3 data sets are 

very promising, however, the system sometimes 

recognizes wrong subjects. An example of misrecognition 

is shown in Fig. 8. This is because the face in the testing 

face image has similar structure with the identified person 

when the testing subject has a variation of face detail or 

pose. Since our method is utilizing only the structure of 

the image, not the color, there might be an advantage if 

the hair color is added into our system also. 

y 

x 
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(a) 

 
(b) 

 
(c) 

Figure 6.  Images in (a) ORL training data set, (b) MIT-CBCL training 
data set, and (c) Georgia tech training data set 

 
(a)                                                (b) 

 
(c) 

Figure 7.  Example of successful recognition from (a) ORL, (b) MIT-
CBCL, and (c) Georgia tech databases. 

 
(a)                                         (b) 

 
(c) 

Figure 8.  Example of wrong recognition from (a) ORL data set, (b) 
MIT-CBCL data set, and (c) Georgia Tech data set. 

IV. CONCLUSIONS 

In this paper, we develop a face recognition system for 

“one sample per person problem” using the string 

grammar nearest neighbor (sgNN). The system provides 

88.25%, 87.50%, and 70.71% recognition rates for the 

ORL, MIT-CBCL, and Georgia Tech databases. 

Although we have satisfied results, we still need an 

improvement in the preprocessing, e.g., the string 

generating process. Also, the hair color is needed to be 

added in the recognition process. Another problem is that 

the Levenshtein distance [30], [31] is based on the 

transformation of the strings that may not be appropriate 

for computing the distance since there may be two strings 

that are close from the view of this distance, but actually 

they are far apart in the normal sense. 
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